Se afișează postările cu eticheta Engineering. Afișați toate postările
Se afișează postările cu eticheta Engineering. Afișați toate postările

49) L'Effet Coandă

L'effet Coandă, c'est un phénomène de la mécanique des fluides, découvert par hasard à la suite d'un contretemps lors d'une expérience d'aéronautique, par l'ingénieur aérodynamicien roumain Henri Coandă (1886-1972), qui lui donna son nom.


Henri Marie Coandă est reconnu aujourd'hui comme étant le père du principe des avions réaction, et ses travaux ont été très tôt récupérés par les nazis (et qui ont abouti au fusées V1 et V2).


L'effet Coanda se présente de la manière suivante : lorsqu'un fluide (gaz ou liquide) sort d'un récipient par un orifice ou un tuyau, une partie de ce fluide a tendance, au moment où il émerge, à épouser intimement le contour extérieur du récipient, même s'il lui faut pour cela, faire un "virage en épingle à cheveux". L'exemple le plus courant de l'effet Coanda est la façon malencontreuse dont le thé s'écoule d'une théière lorsqu'on n'incline pas assez le bec verseur: le thé sort bien de la théière, mais le jet adhère à la paroi extérieure pour s'égoutter finalement ailleurs que dans la tasse où il était censé arriver, c'est donc l'effet Coanda qui se manifeste tout comme Monsieur Jourdain fait de la prose sans le savoir.


L'existence de ce phénomène dépend étroitement de quelques paramètres cruciaux, parmi lesquels on peut citer la vitesse d'écoulement du jet, l'intensité de son débit et le profil exact de l'ajutage de sortie. Autrement dit, lorsque l'effet Coanda se manifeste à la sortie d'une théière, il suffit d'augmenter le débit du thé pour faire cesser le phénomène.


L'effet Coanda, qui peut d'ailleurs avoir des conséquences bénéfiques dans certaines circonstances, s'exerce aussi, et même plus fortement encore, dans le domaine des écoulements gazeux, en particulier en aérodynamique, où il peut donner lieu à des effets très importants en raison d'un phénomène d'entraînement exercé sur l'air environnant. Cet entraînement peut mettre en jeu des quantités d'air suffisantes pour donner lieu à des applications pratiques.


C'est ainsi que dans un certain type de véhicule à coussin d'air, un courant d'air est éjecté vers le haut (et non vers le bas, comme dans les véhicules à coussin d'air conventionnels) a travers une fente annulaire disposée au sommet du véhicule. Ce jet d'air, après être sorti vers le haut, subit l'effet Coanda et s'écoule jusqu'au sol le long des parois du véhicule. Ce faisant, il entraîne avec lui une partie de l'air qui surmonte le véhicule. Il se crée donc au-dessus du véhicule une dépression qui, conjuguée à la surpression (exercée) en-dessous du véhicule, produit un effet de sol suffisant pour soulever le véhicule. Ce phénomène est utilisé notamment par l'armée russe pour des avions volant au ras des vagues et possédant une faible voilure (avions à effet de sol).


Le VZ-9 AV Avrocar (souvent répertorié comme VZ-9) était un avion à décollage et à l'atterrissage vertical (VTOL) du Canada développé par Avro Aircraft Ltd. dans le cadre d'un projet militaire secrèt des États-Unis effectuées dans les premières années de la guerre froide.


Le Avrocar est destiné à exploiter l'effet Coanda pour fournir portance et la poussée d'un seul "turborotor" soufflant échappement sur le bord de l'aéronef en forme de disque pour fournir des performances de VTOL comme prévu. Dans l'air, il aurait ressemblé à une soucoupe volante. Deux prototypes ont été construits comme des véhicules d'essai "preuve de concept" pour un chasseur de l'USAF plus avancé et aussi pour une exigence de l'avion de combat tactique de l'armée américaine.


Le C-17 Globemaster III utilise l'effet Coanda pour une conduite confortable à de faibles vitesses de vol.

Dans un domaine tout à fait différent, l'effet Coanda est à la base du fonctionnement des circuits logiques utilisant un fluide, également appelés circuits fluidiques. Dans ces circuits, où circule de l'air comprimé (éventuellement des liquides sous pression), se produisent les mêmes phénomènes de "tout ou rien" (TOR) que ceux qui régissent la circulation des impulsions électroniques dans les circuits d'ordinateurs. Ils sont donc susceptibles des mêmes applications pratiques, c'est-a-dire les calculs élémentaires ou les décisions logiques. Les circuits fluidiques sont évidemment beaucoup moins rapides que les circuits électroniques, mais ils présentent l'avantage d'être totalement insensibles aux perturbations thermiques, électromagnétiques et mécaniques (vibrations).

Sources:
Effet Coanda
Wikipedia
Mecanique des fluides
Portance
Avrocar et Silverbug
Brevet Invention
GFS Projects
Avions à effet de sol

48) Hermann Julius Oberth - Pionnier de l'exploration spatiale



Hermann Oberth (né le 25 juin 1894 à Hermannstadt (actuellement Sibiu) en Transylvanie, Roumanie, où son père était médecin et mort le 28 décembre 1989 à Nuremberg, Allemagne) était un physicien allemand, spécialiste de l'astronautique, considéré comme l'un des pères fondateurs du vol spatial, aux côtés du russe Constantin Tsiolkovski et de l'américain Robert Goddard.

Hermann Oberth, Konstantin Tsiolkovsky, Robert Goddard

L'intérêt d'Hermann Oberth pour le voyage spatial est éveillé à l'âge de 11 ans par la lecture de Jules Verne.

~1901

En 1915, il commença ses études supérieures à l'Université de Munich à l'origine pour devenir médecin comme son père, cependant au cours de la Première Guerre mondiale, faisant partie d'une section sanitaire de l'armée autrichienne et il s'aperçut qu'il ne ferait pas un bon médecin.

Des soldats autrichiens en route vers le front italien - 1915

À la fin de la guerre, il s'orienta donc vers les mathématiques, la physique, la chimie et l'astronomie et reçut, en 1923, le titre de « Professor Secundar » et fut nommé au collège de Sighișoara. Il présenta la première thèse de doctorat au monde sur la navigation interstellaire Des fusées dans l'espace interplanétaire (Die Rakete zu den Planetenraümen), thèse qui ne sera pas validée mais connaîtra un certain succès sous forme de livre (l'auteur propose entre autres le vol interplanétaire et la réalisation d'une station orbitale permanente).


En 1929, il fut conseiller scientifique sur le film "La Femme sur la Lune" de Fritz Lang :

Dans un but publicitaire et sur ordre de l'UFA (Universum Film Aktiengesellschaft), Hermann Oberth propose le décollage d'une fusée à oxygène liquide pour la première du film, mais - davantage théoricien que technicien, il échoua dans cette tentative pour des problèmes techniques.


Le 23 juillet 1930, il teste avec succès un des premiers moteurs à combustible liquide (oxygène liquide et gaz). L'armée roumaine le remarque et l'embauche pour des recherches.

Hermann Oberth et son moteur-fusée avec combustible liquide - 1930

De 1924 à 1938, il enseigne la physique et les mathématiques au lycée allemand de Mediaș, près de sa ville natale. En 1935, il réussit à Mediaș à l'arsenal de l'armée roumaine, le lancement d'une fusée à combustible liquide.


Ce concept (le moteur-fusée à ergols liquides) sera repris par les allemands dans leurs tests avec des missiles et ils vont faire venir Oberth à Peenemünde pour travailler sur les missiles V2. Il est aussi l'un des rares témoins de l'existence du V7.


Après la guerre, il travailla comme consultant et écrivain, développant sa vision de l'astronautique, imaginant les concepts de station orbitale et de combinaison spatiales, avant de rejoindre, en 1955, Wernher von Braun aux États-Unis.

Hermann Oberth et Wernher von Braun en 1961

À la mémoire de Hermann Oberth
À Feucht (Allemagne), le Musée Spatial lui est consacré : Le Musée Spatial Hermann Oberth.
La Faculté d'Ingénierie de l'Université « Lucian Blaga » de Sibiu porte son nom : La Faculté d'Ingénierie Hermann Oberth.
Un buste du savant a été placé à Sibiu.
Un autre buste de Hermann Oberth a été érigé à Sighișoara, où il a fait ses études de lycée. Une petite place de la même ville porte son nom.
À Mediaș, où le savant expérimentait les moteurs à carburant liquide durant les années 1930, la maison dans laquelle il habitait a été aménagée en musée: la Casa Memorială. La rue porte son nom et un missile russe S-75 Dvina est exposé devant la maison.


Sources:
En 1935, Hermann Oberth réussit à Mediaș à l'arsenal de l'armée roumaine,
le premier lancement au monde d'une fusée à combustible liquide

Hermann Oberth - Un demi-siècle d'avance
Hommage à Hermann Oberth en Roumanie
La Fusée dans les espaces interplanétaires
V2 : "Vergeltungswaffe 2" or "Vengeance Weapon 2"
Traian Vuia (1872 - 1950)
Aurel Vlaicu (1882 - 1913)
Henri Coandă (1886 - 1972)
Hermann Oberth (1894 - 1989)

45) Heavy water, nuclear reactors and... the living water

Heavy water is used in certain types of nuclear reactors, where it acts as a neutron moderator to slow down neutrons. The CANDU reactor uses this design. Light water also acts as a moderator but because light water absorbs more neutrons than heavy water, reactors using light water as moderator must use enriched uranium rather than natural uranium, otherwise criticality is impossible. Nations with heavy water moderated reactors, include: Canada, India, South Korea, Romania, Pakistan, Argentina and China.

C A N a d a  D e u t e r i u m  U r a n i u m  r e a c t o r s
Romania has two nuclear reactors generating almost 20 percent of its electricity (first commercial nuclear power reactor began operating in 1996 and the second started up in May 2007). Cernavoda power plant was based on technology transfer from Canada (AECL), Italy and the USA, with Candu-6 heavy-water reactors. Both reactors are fueled with indigenous UO2 sinterizable powder manufactured at Uranium Ore Processing Feldioara Plant (center Romania). Through Feldioara plant, Romania is the only country in Europe that produces fuel for CANDU nuclear power plants.


Three more partially completed CANDU reactors exist on the same site. Units 3 and 4 were expected to be CANDU 6 reactors with a similar design to Unit 2 and will each have a capacity of 740 MW. China General Nuclear (CGN) has been designated as the "selected investor" for the development of Units 3 and 4. A letter of intent has been signed to complete the two units. There are currently no plans to complete Unit 5 at this time. However, the possibility of finishing construction remains.
CANDU 6 is a safe technology with a successful track-record over the last decades. The heavy-water coolant is kept under pressure, allowing it to be heated to higher temperatures without boiling, much as in a Pressurized Water Reactor.


Romania is a party to the Nuclear Non-Proliferation Treaty (NPT) since 1970 as a non-nuclear weapons state. It is also member of the Nuclear Suppliers' Group. The Additional Protocol in relation to its safeguards agreements with the IAEA came into force in 2000. Romania signed the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on September 24, 1996 and later ratified the CTBT on October 5, 1999.
Because they do not require uranium enrichment, heavy water reactors are of concern in regards to nuclear proliferation. The breeding and extraction of plutonium can be a relatively rapid and cheap route to building a nuclear weapon, as chemical separation of plutonium from fuel is easier than isotopic separation of U-235 from natural uranium. Among current and past nuclear weapons states, China, South Africa and Pakistan first built weapons using highly enriched uranium, while Israel and India used plutonium from heavy water moderated reactors (which "burn" natural uranium).

V V R - S  a n d  T R I G A  f i s s i o n  r e a c t o r s
While Romania had a nuclear research program since 1949, for the first decades it focused on the usage of radioactive isotopes in medicine and industry. The alleged military research program (Danube Program, started in 1978) was conducted at the Măgurele Nuclear Research Institute *. The institute was equipped with a light water cooled / moderated reactor designed to produce neutron flux levels of ~2*10exp13 neutrons/cm3*sec using 4 / 5.6 kg. of U235 fuel (in 1957, a VVRS fission reactor and a U120 cyclotron, both of Soviet origin, were put into service on the site). In 1997 the 2MW thermal power reactor was definitely shut-down. In 2003, Romania handed over to the IAEA 15 kg of highly enriched uranium fuel for the research reactor.


* The Măgurele Platform is a hub of physics and science. The construction and the commissioning of the Nuclear Research Reactor and the Cyclotron was followed shortly by the construction of the first Romanian electronic computing system (1957) and of the first laser in the country (1962), which is the third functional laser in the world (after the United States and Russia). Starting with 2013, ELI-NP (Extreme Light Infrastructure-Nuclear Physics) - a nuclear physics research center is built at Măgurele. The European project ELI will become the world’s most advanced global structure destined to studies related to photon radiation with extreme characteristics. The other two centers, namely ELI-Beamlines and ELI-ALPS, will be built in the Czech Republic and Hungary.


After the 1989 Romanian Revolution, Romania announced the International Atomic Energy Agency (IAEA) that it had 100 mg of plutonium separated in 1985 at the Piteşti Nuclear Research Institute (founded in 1971, using a TRIGA 14 MW pool type reactor, imported from US) and it allowed the IAEA full access to its facilities for inspection. TRIGA was originally designed to be fueled with highly enriched uranium but it was converted to enable use of low-enriched uranium fuel after 1989.

H e a v y  W a t e r
Romania produces heavy water at the Drobeta Girdler sulfide plant (the annual production is about 180 tons and the designed capacity of 360 tonnes/year - the largest capacity in the world). Since 2001 the ROMAG PROD become exporter of nuclear heavy water in South Korea, China, Germany, USA and Switzerland.
Heavy water is obtained from Danube River waters (1 kg of heavy water for approximately 300 tons of normal light water), which - as all surface continental waters, naturally contain a heavy water quantity of 0.0145%. This heavy water existing in natural water, is separated and enriched within ROMAG-PROD Plant up to a nuclear grade concentration of minimum 99.78%. The process of heavy water producing is based on isotopic exchange between water and hydrogen sulphide in bi-therm system, inside of Girdler-Sulphide plants, where a primary enrichment in Deuterium is reached up to approx 4-12%, based on the following reactions:
The primary enrichment is followed by a final concentration within a distillation under vacuum installation.


L i v i n g  W a t e r
The by-product of the above mentioned process is the Ultralight Water or Deuterium-Depleted Water (DDW); water which has a lower concentration of deuterium than occurs naturally. Production of ultralight water can result during electrolysis, distillation, and desalination. Filtration through special membranes and crystallization are also considered preparation methods. It can also be produced directly using the Girdler sulfide process.


Experiments have shown that consumption of light water may be beneficial as an adjunct to chemotherapy:

"Mice fed for 15 days with Deuterium-Depleted Water (30 ppm deuterium) had a statistically significant increased survival rate compared with control groups fed with normal distilled water (150 ppm deuterium), after 8.5 Gy irradiation (61% survival in the test group versus 25% in the control group). The hematological picture showed that normal WBC, RBC and platelet counts were maintained in the test groups. Immunological parameters (serum opsonic and bactericidal capacity, bactericidal capacity of the peritoneal macrophages) showed a marked increase in the test groups compared to a severe decrease in the control groups. Auxiliary tests using chemical radiomimetics (hydrochloric embihine) and immunosuppressors (cyclophosphamide) showed a strong protective effect of deuterium-depleted water against the decrease of the leukocyte counts and other immunologic parameters. In conditions of experimental inflammation induced with subcutaneous-implanted pellets, deuterium-depleted water feeding resulted in a statistically significant increase of the inflammatory response, demonstrated by increased percentages of PMN and lymphocytes in the peripheral blood and the increased phagocytic capacity of the peripheral blood PMN. Experimental infections induced with K. pneumoniae 506 and S. pneumoniae 558 in mice irradiated or treated with cyclophosphamide showed increased, non-specific immunity parameters. All results show a marked intensification of the immune defenses and increased proliferation of the peripheral blood cells, probably accounting for the radioprotective effects." (Romanian journal of physiology: physiological sciences; 1999 Jul-Dec)

"Deuterium-depleted water consumption integrated into conventional treatments resulted in a survival time of 26.6, 54.6, 21.9, and 33.4 months in the 4 patients, respectively. The brain metastasis of 2 patients showed complete response (CR), whereas partial response (PR) was detected in 1 patient, and the tumor growth was halted (no change or NC) in 1 case. The primary tumor of 2 patients indicated CR, and the lung tumor in 2 patients showed PR.
Conclusions: Deuterium-depleted water was administered as an oral anticancer agent in addition to conventional therapy, and noticeably prolonged the survival time of all 4 lung cancer patients with brain metastasis. We suggest that DDW treatment, when integrated into other forms of cancer treatment, might provide a new therapeutic option." (Integrative Cancer Therapies; 2008 Sep).

"The concentration of deuterium is about 150 ppm (over 16 mmol/L) in surface water and more than 10 mmol/L in living organisms. Experiments with deuterium depleted water (30+/-5 ppm) revealed that due to D-depletion various tumorous cell lines (PC-3, human prostate, MDA, human breast, HT-29, human colon, M14, human melanoma) required longer time to multiply in vitro. DDW caused tumor regression in xenotransplanted mice (MDA and MCF-7, human breast, PC-3) and induced apoptosis in vitro and in vivo. Deuterium depleted water (25+/-5 ppm) induced complete or partial tumor regression in dogs and cats with spontaneous malignancies, it was registered as anticancer for veterinary use in 1999 (Vetera-DDW-25 A.U.V., 13/99 FVM). The hypodermic preparation of the registered veterinary drug was successfully tested in clinical investigations. Under the permission of the Hungarian Institute of Pharmacology (No. 5621/40/95) a randomized, double blind controlled, human Phase II clinical trial with prostate cancer was performed, in compliance with GCP principles, which exhibited a significant difference between the control and treated groups with respect to the examined parameters, median survival time and the extension of life-span. We suggest that cells are able to regulate the D/H ratio and the changes in the D/H ratio can trigger certain molecular mechanisms having a key role in cell cycle regulation. We suppose that not the shift in the intracellular pH, but the concomitant increase in the D/H ratio is the real trigger for the cells to enter into S phase. The decrease of D concentration can intervene in the signal transduction pathways thus leading to tumor regression. Deuterium depletion may open new perspectives in cancer treatment and prevention helping to increase the effectiveness of current oncotherapies." (Orvosi Hetilap; 2010 Sep.).

Despite Gilbert Lewis' call in 1934 for such experiments, research on the effects of deuterium-depletion on living cells has been very limited with less than a dozen peer-reviewed research papers available via PubMed in mid-2011.


The most striking discovery was that tumour cells proved to be extremely sensitive to D-depletion, resulting in tumour regression and may even cause the necrosis of the tumour. On the other hand, healthy cells are able to adapt to the decreasing D-concentration. The growth rate of different tumourous cell lines in tissue culture (PC-3 human prostate-, MCF-7 and MDA human breast adenocarcinoma-, HT-29 human colon carcinoma-, A4 human leukaemia, as well as M14 human melanoma cells) was significantly inhibited in culture media containing DDW.






Sources:
Heavy water ; Technology
General Overview of Institute
CANDU reactor around the world
Deuterium-depleted water
Water drops - wallpaper ; Freewallsource
Research concerning the radioprotective and immunostimulating effects of deuterium-depleted water
Preventa ; Deuterium Depletion ; Deuterium Depletion in Life Science
Process and installation for obtaining the deuterium depleted water
Water of life ; Ioan Stefanescu ; Apa vie ; Qlarivia
Findings on CANDU Reactor Accidents
Nuclear Power in Romania
Cernavoda 6 a Safe Technology
Nuclear incident in Ukraine
Canada Deuterium Uranium reactor: schematic diagram
Revealing water’s secrets: deuterium depleted water
Molecular and Clinical Effects of Deuterium Depleted Water in Treatment and Prevention of Cancer

44) Three things you didn't know about... Gold mining


Tenth in the world in terms of the diversity of minerals produced in the country, 60 different minerals are currently extracted and manufactured in Romania.
The Golden Quadrilateral in the Metaliferi Mountains (a mountain range in Transylvania, which belongs to the Western Romanian Carpathians) includes gold and silver deposits which constitute "the most productive gold area in Europe". The Golden Quadrilateral covers an area of approximately 500 km2 within the Apuseni Mountains ("Past and present mining in the Apuseni Mountains" study, 2006).

Roșia Montană Gold sample

Modern-day gold mining
The average gold content over the last 200 years of mining in Romanian Metaliferi Mountains is estimated at 10 grams per tonne (Udubaşa & Udubaşa study, 2004). Ghiţulescu & Socolescu estimated a total mined quantity of gold and silver of 85 tons untill 1941 (30 tons of gold and 55 tons of silver, since 1746). The highest level of gold production in Romania was reached in 1949 at 35 tons (400 kg in 2008 being the lowest level since January 01, 1942).
In Roșia Montană area is the largest gold deposit in continental Europe, estimated at over 300 tons of gold and 1600 tons of silver, having a value of $3 billion.
According to "Mineral assemblages at Săcărâmb" study, the open pit mine located near Certeju de Sus village, has estimated reserves of around 10 million tons grading 1~2 grams per tonne gold in the salband ore (~15 tons in total, having a value of ~$0.15 billion).
According to the World Gold Council (WGC), larger and better quality underground mines contain around 8 to 10 grams per tonne, with marginal underground mines have averages of around 4 to 6 grams per tonne. Open pit mines usually have lower grades from 1 to 4 grams per tonne.

Native Gold on Quartz from Romania

Ancient gold mining
The ancient gold mine in Rosia Montana, in the Apuseni Mountains of western Transylvania, should be considered: “the most extensive and most important underground Roman gold mine known anywhere", according to Andrew Wilson and David Mattingly, professors of Roman archeology at Oxford University and Leicester University respectively (2010).
Even before Romans, the Dacians traded this gold to the Greeks for fancy pottery and to the Scythians for amber. About 100 AD the Roman Emperor Trajan conquered Dacia - mainly in order to get this gold. The Romans used the Dacian gold to pay their army.
"Several well preserved mining works and many archaeological findings confirm the very early gold extraction. The Apuseni Mountains have been inhabited since the Stone Age. It is known that Apuseni gold was used by the Mycenaeans and the Trojans, and is believed to have been used also by the Pharaohs. The region was known as Dacia and inhabited by the Dacs. The Romans conquered this area and carried out tonnes of gold and silver. Trajan’s Column in Rome commemorates the importance of the conquest. It was calculated that the Romans had extracted about 150 tons of gold from Dacia" ("Past and present mining in the Apuseni Mountains"; Attila Toth - Eötvös Lóránd University, Budapest, Aurélie Quiquerez - University of Lausanne, István Marton - University of Geneva, 2006).


The Gold Museum
Also known as the Mineralogical Collection of Brad, The Gold Museum in the small Romanian city of Brad is the only one of its kind in Europe. Founded 100 years ago, the gallery contains a mind-blowing collection of over 2000 pieces of gold gathered here from across the world. A highlight of the museum, however, is the native gold which is displayed exactly as found in the mines of the Romanian mountains. The pieces are so unique and spectacular that their value does not depend on grammage anymore. For instance, a lizard shaped item of only seven tenths of a gram of gold has been evaluated at €3 million.

The Gold Museum in Brad

Sources:
Mining industry
Archaeology report stalls Romania plans to dig up ancient Roman gold mine
12 Things I Bet You Didn’t Know
Tellurium study: Popescu & Neacsu
Past and present mining in the Apuseni Mountains
Gold - Mining History for Kids
Gold Investing News
Goddess of the Earth
Apuseni Mountains

43) Goddess of the Earth - Tellurium

Tellurium (Latin tellus meaning "goddess of the earth") was discovered in the 18th century in a gold ore from the mines in Zlatna, near today's city of Sibiu, Romania.
This ore was known as "Faczebajer weißes blättriges Golderz" (white leafy gold ore from Faczebaja, German name of Facebánya, now Faţa Băii in Alba County) or antimonalischer Goldkies (antimonic gold pyrite), and, according to Anton von Rupprecht, was Spießglaskönig (argent molybdique), containing native antimony. In 1782 Franz-Joseph Müller von Reichenstein, who was then serving as the Austrian chief inspector of mines in Transylvania, concluded that the ore did not contain antimony, but that it was bismuth sulfide. The following year, he reported that this was erroneous and that the ore contained mostly gold and an unknown metal very similar to antimony. After a thorough investigation which lasted for three years and consisted of more than fifty tests, Müller determined the specific gravity of the mineral and noted the radish-like odor of the white smoke which passed off when the new metal was heated, the red color which the metal imparts to sulfuric acid, and the black precipitate which this solution gives when diluted with water. Nevertheless, he was not able to identify this metal and gave it the names aurum paradoxium and metallum problematicum, as it did not show the properties predicted for the expected antimony.

Industrial and Commercial Uses
The first application of chemical bonding of tellurium was used in making the outer shell of the first atom bomb.
Tellurium has many unique industrial and commercial uses that improve product quality and quality-of-life. Many of these technologies that utilize tellurium have important uses for the energy industry, the military, and health industries. Tellurium is used to color glass and ceramics and can improve the machining quality of metal products. When added to copper alloys, tellurium makes the alloy more ductile, whereas it can prevent corrosion in lead products. Tellurium is an important component of infrared detectors used by the military as well as x-ray detectors used by a variety of fields including medicine, science, and security. In addition, tellurium-based catalysts are used to produce higher-quality rubber.
CdTe films are one of the highest efficiency photovoltaics, metals that convert sunlight directly into electrical power, at 11-13% efficiency and are, therefore, widely used in solar panels. CdTe is a thin-film semiconductor that absorbs sunlight.
Tellurium can be replaced by other elements in some of its uses. For many metallurgical uses, selenium, bismuth or lead are effective substitutes. Both selenium and sulfur can replace tellurium in rubber production.
Technologies based on tellurium have global impacts. As a photovoltaic, CdTe is the second most utilized solar cell in the world, soon said to surpass crystalline silicon and become the first. According to the US military, the tellurium-based infrared detectors are the reason that the military has such an advantage at night, an advantage which, in turn, has an effect on global and domestic politics.

Environmental Impacts
Tellurium extraction, as a byproduct of copper refinement, shares environmental impacts associated with copper mining and extraction. While a generally safe process, the removal of copper from other impurities in the ore is can lead to leaching of various hazardous sediments. In addition, the mining of copper tends to lead to reduced water flow and quality, disruption of soils and erosion of riverbanks, and reduction of air quality.

Resource Limitations vs. Demand
About 215-220 tons of Tellurium (Te) are mined across the globe every year. In 2006, the US produced 40% of production, Peru produced 30%, Japan produced 20%, and Canada produced 10% of the world's tellurium supply (since the chart can't be any bigger). The leading countries in production are the United States with 50 tons per year, Japan with 40 tons per year, Canada with 16 tons per year, and Peru with 7 tons per year (year 2009). When pure, Tellurium costs $24 per 100 grams. Because Tellurium is about as rare as platinum on earth, the United States Department of Energy expects a supply shortfall by the year 2025, despite the always improving extraction methods. As demand increases to provide the Tellurium needed for solar panels and other such things, supply will continue to decrease and thus the price will skyrocket. This will cause waves in the sustainable energy movement as well as military practices and modern medicine.


In Romanian Metaliferi Mountains, at Săcărâmb, where the average Au content over 200 years of mining is estimated at 10 g/tonne (Udubaşa & Udubaşa study, 2004), Ghiţulescu & Socolescu estimated a total mined quantity of Au and Ag of 85 tons untill 1941 (30 tons Au and 55 tons Ag). No data are available on the Tellurium content in the ore deposit or on the total Tellurium quantity mined. However, based on the Au:Te ratio of 1:2 in some of the most frequent Telluride occurring in the deposit (nagyágite and sylvanite), one can infer a Tellurium content 20 g/tonne and a total amount of 60 tons of Tellurium mined and unprocessed until 1941 (just dumped), from Săcărâmb ore deposit alone (as mentioned in the 2013 study: "Tellurium, Selenium and Cadmium resources in the waste dumps of Săcărâmb area: Apuseni Mountains, Romania. A preliminary estimation" – by Gheorghe C. Popescu, Antonela Neacşu, Mihaela Elena Cioacă & Grigore Buia).
According to another study: "Mineral assemblages at Săcărâmb", this mine has estimated reserves of around 10 million tons grading 1~2 g/tonne Gold in the salband ore (meaning a total amount of 20~40 tons of Tellurium; based on the Au:Te ratio of 1:2).


Sources:
The Importance of Tellurium as a Health Hazard in Industry
Tellurium Resources
Mineralogy, Resources, Energetic implications
Delaware Mineralogical Society
Tellurium
Carpathian Journal of Earth and Environmental Sciences
Golden Quadrilateral, Romania
Gold Rush In Romania

POPULAR POSTS / POSTS POPULAIRES